795 research outputs found

    Impact of prey field variability on early cod larval survival: a sensitivity study of a Baltic cod Individual-based Model

    Get PDF
    Existing coupled biophysical models for Baltic larval cod drift, growth and survival use idealised constructed mean prey fields of nauplius distributions. These simulations revealed the best feeding conditions for Baltic cod larvae longer than 6 mm. For shorter, first feeding larvae (between 4.5 and 6 mm) pronounced differences in growth and survival were observed, which depend on food availability and to a lesser degree on ambient temperature. We performed runs with an Individual-based Model (IBM) for Baltic cod larvae in order to demonstrate how natural variability in prey abundance influences the survival success of first feeding larvae. In the Baltic, this larval stage lives mainly between 20 and 40 m depth and feeds exclusively on the nauplii of different calanoid copepods (Acartia spp., Pseudocalanus acuspes, Temora longicornis and Centropages hamatus). Prey data obtained from vertically stratified samples in the Bornholm Basin (Baltic Sea) in 2001 and 2002 indicate a strong variability at spatial and temporal scales. We calculated larval survival and growth in relation to natural variation of prey fields, i.e. species-specific nauplius abundance. The results of the model runs yielded larval survival rates from 60 to 100% if the mean size of nauplii species was taken and lower survival if prey consisted of early nauplius stages only

    Feeding ecology of sprat (Sprattus sprattus L.) and sardine (Sardina pilchardus W.) larvae in the German Bight, North Sea

    Get PDF
    The abundance of the sardine in the North Sea suddenly increased after 1995. Since 2002, the sardine has been spawning regularly in the German Bight, and all its life stages can be found in the area. The larval feeding ecology of two small pelagic clupeiform species with very similar life histories was investigated, the particular aim being to determine signs of food overlap. The distribution and feeding of sprat and sardine larvae were investigated during late spring 2003 on two transects covering a wide range of environmental conditions in the German Bight. Larvae co-occurred at all the stations investigated. Sprat and sardine larvae shared a wide range of prey types. Gut fullness and feeding success were similar in both species; however, potential food competition is avoided to some extent by different habitat preferences

    Maximum tunneling velocities in symmetric double well potentials

    Get PDF
    We consider coherent tunneling of one-dimensional model systems in non-cyclic or cyclic symmetric double well potentials. Generic potentials are constructed which allow for analytical estimates of the quantum dynamics in the non-relativistic deep tunneling regime, in terms of the tunneling distance, barrier height and mass (or moment of inertia). For cyclic systems, the results may be scaled to agree well with periodic potentials for which semi-analytical results in terms of Mathieu functions exist. Starting from a wavepacket which is initially localized in one of the potential wells, the subsequent periodic tunneling is associated with tunneling velocities. These velocities (or angular velocities) are evaluated as the ratio of the flux densities versus the probability densities. The maximum velocities are found under the top of the barrier where they scale as the square root of the ratio of barrier height and mass (or moment of inertia), independent of the tunneling distance. They are applied exemplarily to several prototypical molecular models of non-cyclic and cyclic tunneling, including ammonia inversion, Cope rearrangment of semibullvalene, torsions of molecular fragments, and rotational tunneling in strong laser fields. Typical maximum velocities and angular velocities are in the order of a few km/s and from 10 to 100 THz for our non-cyclic and cyclic systems, respectively, much faster than time-averaged velocities. Even for the more extreme case of an electron tunneling through a barrier of height of one Hartree, the velocity is only about one percent of the speed of light. Estimates of the corresponding time scales for passing through {the narrow domain just} below the potential barrier are in the domain from 2 to 40 fs, much shorter than the tunneling times

    Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production

    Get PDF
    The thermal stratification of the upper water layers in the Baltic Sea varies seasonally in response to the annual cycle of solar heating and wind-induced mixing. In winter, the stratification down to the halocline is almost completely eroded by convection and strong wind mixing. Monthly averaged temperature profiles obtained from the ICES hydrographic database were used to study the long-term variability (1950 to 2005) of winter water mass formation in different deep basins of the Baltic Sea east of the island of Bornholm. Besides strong interannual variability of deep winter water temperatures, the last two decades show a positive trend (increase of 1-1.5°C). Correlations of winter surface temperatures to temperatures of the winter water body located directly above or within the top of the halocline were strongly positive until the autumn months. Such a close coupling allows sea surface temperatures in winter to be used to forecast the seasonal development of the thermal signature in deeper layers with a high degree of confidence. The most significant impact of winter sea surface temperatures on the thermal signature in this depth range can be assigned to February/March. Stronger solar heating during spring and summer results in thermal stratification of the water column leading to a complete decoupling of surface and deep winter water temperatures. Based on laboratory experiments, temperature-dependent relationships were utilised to analyse interannual variations of biological processes with special emphasis on the upper trophic levels (e.g., stage-specific developmental rates of zooplankton and survival rates of fish eggs)

    Vertical distribution of Baltic sprat larvae: changes in patterns of diel migration?

    Get PDF
    Ontogenetic and diurnal vertical migration patterns of Baltic sprat larvae were investigated for the periods 1989–1990 and 1998–2002. Comparison of the results led to the hypothesis that the diel vertical migration behaviour of sprat larvae >10 mm has changed. In 1989 and 1990, sprat larvae migrated to the surface at night, whereas they stayed 30–50 m deep by day. From 1998 to 2002, sprat larvae showed no signs of diel vertical migration, remaining in warmer, near-surface water by day and night. This behavioural change coincided with a more general change in the Baltic ecosystem, i.e. an increase in near-surface temperature and a general increase in abundance of the major prey organism (Acartia spp.) of Baltic sprat larvae, with more pronounced aggregation in surface waters

    Breaking down the barriers between Ecosystem services and the Fisheries Socio-Ecological System : abstract

    Get PDF
    Fisheries research gives scientific advice towards informing the management of different types of fisheries, mainly on the basis of the biology of a single stock, i.e. how much can sustainably be harvested from this stock every year. Implicitly, some ecosystem functions of this stock are taken into account through specific natural mortality analyses to assess the stock status and to derive advice on total catch for the following year. Indeed the ecosystem-based management is becoming more and more used on the assessment of fisheries, for instance in the last update of the European Common Fisheries Policy. Still there are several issues and conflicts emerging in different fisheries-related cases around the globe. This highlights the need for a holistic approach of the the marine/fisheries system where ecological, social, economic and institutional aspects are taken into account. We go beyond the standard fisheries or ecosystem-based approach and see the fisheries “system” as a complex, dynamic socio-ecological system, with a variety of interaction types and a broad range of ecosystem services and beneficiaries. Our goal is to highlight the complex nature of this system, give emphasis on different types of ecosystem services generated by this system (from the standard food provisioning ones, to regulating and cultural) and use this approach as a means to incorporate fisheries management in broader decision-making strategies. We highlight research areas where fisheries and ecosystem services science share common grounds and explore ways to improve scientific knowledge around this topic. This work is a conversation starter, aiming to bring together researchers from both communities in order to improve research and practice around the topic

    Establishing a Sustainable Development Goal for Oceans and Coasts to Face the Challenges of our Future Ocean

    Get PDF
    Oceans regulate our climate, provide us with natural resources such as food, materials, substances, and energy and are essential for international trade, recreational, and cultural activities. Free access to and availability of ocean resources and services, together with human development, have put strong pressures on marine ecosystems, ranging from overfishing and reckless resource extraction to various channels of careless pollution. International cooperation and negotiations are required to protect the marine environment and use marine resources in a way that the needs of future generations will be met. For that purpose, developing and agreeing on a Sustainable Development Goal (SDG) Oceans and Coasts could be an essential element for sustainable ocean management. The SDGs will build upon the Millennium Development Goals (MDG) and replace them by 2015. Even though ensuring environmental sustainability is one of the eight MDG goals, the ocean is not explicitly included. Furthermore, the creation of a comprehensive underlying set of oceanic sustainability indicators would help assessing the current status of marine systems, diagnose on-going trends, and provide information for forward-locking and sustainable ocean governance

    SrAlSi4N7:Eu2+

    Get PDF
    The new nitridoalumosilicate phosphor SrAlSi4N7:Eu2+ has been synthesized under nitrogen atmosphere at temperatures up to 1630°C in a radio-frequency furnace starting from Sr metal, α-Si3N4, AlN, and additional Eu metal. The crystal structure of the host compound SrAlSi4N7 has been solved and refined on the basis of single-crystal and powder X-ray diffraction data. In the solid, there is a network structure of corner-sharing SiN4 tetrahedra incorporating infinite chains of all edge-sharing AlN4 tetrahedra running along [001] (SrAlSi4N7: Pna21 (No. 33), Z = 8, a = 11.742(2) Å, b = 21.391(4) Å, c = 4.966(1) Å, V = 12.472(4) Å3, 2739 reflections, 236 refined parameters, R1 = 0.0366). The Eu2+-doped compound SrAlSi4N7:Eu2+ shows typical broadband emission originating from dipole-allowed 4f6(7FJ)5d1 → 4f7 (8S7/2) transitions in the orange-red spectral region (λmax = 632 nm for 2% Eu doping level, 450 nm excitation) with a spectral width of FWHM = 2955 (± 75) cm−1 and a Stokes shift ΔS = 4823 (± 100) cm−1. The luminescence properties make the phosphor an attractive candidate material as red component in trichromatic warm white light LEDs with excellent color rendition properties
    corecore